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Answer Question 

1. Answer any five questions :

 a) Give an example with proper justification of a balanced set in a 

vector space which is not absorbing.

 b) If M is a subset of a topological vector space 

MM  for any scalar 

 c) Suppose A is a convex absorbing set containing 

space X and let 

that )( xp
A



 d) In a normed linear space, show that weak convergence does not 

imply strong convergence. 

 e) Let X be a normed linear space, 

XXT : defined by 

operator. 

 f) Show that the set of all invertible elements of a Banach algebra 

X with identity e

 g) Let H be complex Hilbert space and 

T can be expressed uniquely as 

adjoint operators on 
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Question No. 1 and any four from the rest : 

questions : 2 

Give an example with proper justification of a balanced set in a 

vector space which is not absorbing.   

is a subset of a topological vector space X, then prove that 

for any scalar . 

is a convex absorbing set containing  of a vector 

and let 
A

p be the Minkowski functional for A. Then prove 

)( xp
A

 for all scales 0 and for all Xx

In a normed linear space, show that weak convergence does not 

imply strong convergence.  

be a normed linear space, Xz   and 


 Xf . Show that 

defined by XxzxfxT  ,)()( is a compact linear 

Show that the set of all invertible elements of a Banach algebra 

e forms a group under multiplication. 

be complex Hilbert space and )(HBT  . Then prove that 

can be expressed uniquely as BiAT  where A, B 

adjoint operators on H. 
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 5 = 10 

Give an example with proper justification of a balanced set in a 

, then prove that 

of a vector 

. Then prove 

. 

In a normed linear space, show that weak convergence does not 

 

. Show that 

is a compact linear 

Show that the set of all invertible elements of a Banach algebra               

. Then prove that             

 are self 



QP Code: 22/PT/13/XB(i)

 

2. a) Prove that a topological vector space has a balanced local base.

 b) Prove that the following statements are equivalent in a topological 

vector space X :

  (i) A subset B 

  (ii) If { 
n

x } is any sequence in 

scalars with 

     

 c) Let X be a topological vector space. Prove that

  (i) if C is a convex subset of 

  (ii) if B is a balanced subset of 

Int B is balanced.

3. a) If K and C are subsets of a topological vector space 

compact, C is closed and 

neighbourhood 

 b) Prove that every locally compact topological vector space is finite 

dimensional. 

4. a) Let f be a non-zero linear functional on a topological vector space 

X. Prove that the foll

  (i) f is continuous

  (ii) {)(ker  xf

  (iii) )(ker f is not dense in 

  (iv) f is bounded in some neighbourhood 

 b) Let  be a convex balanced local base in a topological vector 

space X.  Associate to every 

Then prove that

  (i) :{  pXxV

  (ii) Vp
v

:{

on X. 
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Prove that a topological vector space has a balanced local base.

Prove that the following statements are equivalent in a topological 

: 

 of X is bounded. 

} is any sequence in B and { 
n

 } is any sequence of 

scalars with 
  lim

n  
 0

n
, then }{

nn
x  converges to 

be a topological vector space. Prove that 

is a convex subset of X, so are Int C and .C  

is a balanced subset of X, so is B . If also Int

is balanced. 

are subsets of a topological vector space 

is closed and CK I , then prove that there exists a 

 V of  in X such that  )()(  VCVK I

Prove that every locally compact topological vector space is finite 

 

zero linear functional on a topological vector space 

. Prove that the following statements are equivalent : 

is continuous. 

}0)(:  xfX is closed. 

is not dense in X. 

is bounded in some neighbourhood  in X. 

be a convex balanced local base in a topological vector 

ssociate to every V  its Minkowski functional 

Then prove that 

}1)( xp
v

for very V  

 } is a separating family of continuous seminor

 

Prove that a topological vector space has a balanced local base. 2 

Prove that the following statements are equivalent in a topological 

is any sequence of 

converges to  in X. 

4 

,IntB then 

2 + 2 

are subsets of a topological vector space X, K is 

, then prove that there exists a 

.  5 

Prove that every locally compact topological vector space is finite 

5 

zero linear functional on a topological vector space 

6 

be a convex balanced local base in a topological vector 

its Minkowski functional 
v

p . 

continuous seminorms 

4 
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5. a) Prove that the conjugate space of 
p

l is isomorphic to the sequence 

space 
q

l where  qp,1  and 1
11



qp . 4 

 b) Show that in a normal linear space X, the set M of all best 

approximations to a given Xx  out of a subspace Y is a convex 

set. 3 

 c) Let X be a normed linear space with a strictly convex norm and   

G be a subspace of X. If Xx  , then prove that there is at most 

one best approximation to x out of the elements of G. 3 

6. a) Let X and Y be two normed linear spaces. When is a 

transformation YXT : called compact ? If YXST :, are 

compact operators and  is a scalar then prove that T + S,  T are 

compact. 1 + 3 

 b) Show that the spectrum )(T of a bounded self adjoint linear 

operator HHT : on a complex Hilbert space H lies in the closed 

interval [ m, M ] on the real axis where ,,
inf

1



xTxm

x




xTxM
x

,
sup

1
. 3 

 c) Let H be a complex Hilbert space and let 
21

, PP  be orthogonal 

projections on the closed subspaces 
1

M and 
2

M  respectively. 

Show that 
21

PP  is an orthogonal projection if and only if 

1221
PPPP  . 3 

7. a) Let X be a Banach algebra with identity e. If Xx  satisfies 

1x  then prove that )( xe   is invertible and 









1

1
)(

j

j
xexe . 4 

 b) State and prove Gelfand-Mazur theorem. 3 

 c) Prove that a subspace M of a normed linear space X is weekly 

closed if and only if it is strongly closed. 3  

   


